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CONTRACTOR REPORT

DYNAMICS SIMULATION MODEL FOR SPACE TETHERS

I.  INTRODUCTION

The Momentum Exchange Electrodynamic Reboost (MXER) system is a rotating tether about 
100 kilometers long in elliptical equatorial Earth orbit designed to catch payloads in LEO with its lower 
end and throw the payloads to geosynchronous transfer orbit (GTO) or to Earth escape by releasing 
the payloads at the top of the MXER rotation. To ensure successful rendezvous between the catcher at 
the MXER tip and a payload in LEO, a high-fidelity model of the system dynamics and control must 
be developed. This model must show that the MXER tether tip can be maneuvered precisely and at 
the exact time to rendezvous with and catch a payload, to within meters of positional error and within 
meters/second of velocity error, all at high tip acceleration. 

This report deals with an investigation of the modeling of the MXER dynamics in order to pro
vide an accurate enough representation of the MXER system and the environmental perturbations to 
ensure that payloads can be reliably caught and released on accurate trajectories. This allows an evalua
tion of the control requirements for MXER operations, the implications of operations in nonequatorial 
orbits, and the use of electrodynamic forces in multiple rendezvous control. We examined the accuracy 
of various models and the accuracy of environmental measurements required to predict the MXER tip 
position after one orbit, but did not deal with the requirements of electrodynamic reboosting. 
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II.  DYNAMIC MODEL AND PERTURBATION RESPONSES 

	 To develop effective mathematical approaches to the accurate simulation of the dynamics of a 
MXER tether system, we addressed two fundamental themes:

1.	 Identification of the MXER system dynamics and its responses to various perturbations, the relative 
importance of perturbing factors and environmental unknowns, and the required accuracy of the 
dynamic model; and

2.	 Based upon the understanding of the dynamic behavior of MXER, development and comparison of 
different computational methods to identify the most effective approach to the simulation of MXER 
dynamics.

	 The theory of pendular motions formulated in the book “Dynamics of Space Tether Systems” 
(1993) by Beletsky and Levin was applied to a MXER system consisting of a number of point masses 
connected with massive tethers of fixed lengths. Equations for determining eigenforms and eigen
frequencies of a rapidly rotating tether system were derived, leading to the equations of the excitation of 
eigenforms under small perturbations. Eigenforms and eigenfrequencies were computed, and the motion 
of a the MXER system was developed as a combination of the orbital motion of the center of mass, 
rotation about the center of mass, and vibrations about the line of rotation. This approach gives a very 
effective and clear way to describe the dynamic responses to perturbations.

	 A reference (unperturbed) motion near the equatorial plane was defined that results in an ideal 
rendezvous; the required integration accuracy was then determined for a typical rendezvous preparation 
period of a day or a few days.
	
	 The perturbing gravitational forces on the tether system are partly caused by the fact that the 
tether length is generally not small. After considering a number of analytical approaches, an expansion 
in a form of a polynomial series was adopted to represent the gravitational perturbations on a tether sys
tem of finite length.

 
	 The minimum number of terms in the gravitational field expansion needed to support high-
precision modeling of MXER dynamics was considered. It was determined that while this number is not 
particularly large at the apogee, it increases dramatically at the perigee, with the amount of computation 
increasing proportionally to the second power of the required order of the gravitational model. A rela
tively simple practical formula was derived to determine the minimum required order of the gravita
tional field as a function of the current geocentric radius. A similar formula was derived to evaluate the 
minimum number of terms in the expansion of the gravitational perturbation force due to a finite (not 
small) spatial span of the MXER system.



�

	 Assuming linear superposition, the dynamic response to each perturbation was analyzed, including 
harmonics of the Earth gravitational field, interaction of the geomagnetic field with a sample current in 
the tether, aerodynamics, solar pressure, tether temperature variations, creep, and mass loss, to provide a 
richly detailed dynamic portrait of the system. 

	 Based on the dynamic response study, we described the impact of each perturbation on the rendez
vous accuracy and derive the accuracy requirements for each perturbation model. This analysis may also 
suggest ways to compensate for environmental unknowns with in-flight measurements.

	 The model based on the modal decomposition allows us to calculate the position of the MXER 
tether ends to the required accuracy of about 1 meter after one orbit. The results of this task, including a 
detailed dynamic portrait of the system, its sensitivity to perturbations, and the model accuracy require
ments, provide the necessary basis for finding effective computational schemes for MXER. The complete 
analysis is shown in Appendix A.
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III.  DEVELOPMENT OF COMPUTATIONAL MODEL

The MXER dynamic model consists of multiple point masses connected in succession with 
fixed-length uniform tethers. We investigated convergence, stability, error accumulation, minimum 
number of nodes or modes, ways to compute external forces, optimal integration, maximum time step 
and propagation speed. Special attention was paid to the stiffness of the system caused by a drastic dif
ference between the longitudinal and transverse wave velocities. We then compared the advantages and 
disadvantages of all methods and determined the most effective approach.

	 One of the benefits of the suggested analytical formulation is that it allows us to operate with 
finite formulas, and to avoid integration of the gravitational forces along the tether on each simulation 
step; this leads to a faster computational scheme. The minimum number of expansion terms for the 
required accuracy was considered.

	 Suitable ways of incorporating non-gravitational forces into the high-precision modal-based 
computational scheme were investigated. One of the goals was to avoid integration of the distributed 
forces along the tether on each step. It was shown that a compact set of pre-computed coefficients can be 
used to effectively account for distributed and concentrated forces with the required precision, assuming 
that the environmental models are accurate. In test runs, the computational overhead of adding the per
turbation forces was not significant.

	 The second model used modified Minakov’s equations, which are a form of second order partial 
differential equations with respect to the tether tension. The advantage is that they allow easier separa
tion of fast longitudinal oscillations from the slow transverse oscillations of the tether, and therefore, 
they can be integrated with larger time steps. 

	 To independently verify the results of both modal decomposition method and Minakov’s method, 
a third model with lumped masses was developed.

	 The complete results of this simulation are presented in the two appendices. Assuming that the 
environmental parameters are known to the required precision, the modal decomposition method proved 
to be accurate enough to provide 9–10 digit precision in prediction of the MXER tether position over the 
time of one orbit, providing accuracy on the order of 1 meter in the tip position. The results show that 
these equations can be integrated with a time step of about 3–4 seconds of orbital time, taking only a few 
seconds on a standard PC to propagate a solution over one orbit with 9–10 digit precision. 
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IV.  C++ DEMONSTRATION OF MODEL PERFORMANCE

	 Because of requirements for coding the equations of motion for MXER into NASA’s MXER 
Simulation Program, we provided assistance in adapting the equations for coding at the MSFC. The 
requirement was for the equations to be coded, checked, and documented as an additional part of the 
contract. Output was provided as a text file representing a solution with predefined parameters.

	 We provided a computer source code from our results written as a Microsoft Visual C++ project 
for a Win32 console application demonstrating computational techniques involved in our high precision 
MXER simulation based on the modal decomposition. The source code was delivered in May of 2005, 
and is a separate item from this final report.
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V.  RESULTS

	 The model based on the modal decomposition of motion was used to evaluate the effects of the 
various perturbations on the transverse tip response. The results are shown in the table. The MXER sys
tem is extremely sensitive to temperature variations and creep, with the responses to these perturbations 
being 1–2 orders of magnitude higher than the others. Creep is due to the tether stress, and will be rela
tively constant, but the temperature response will depend on the deterioration of the tether surface, cloud 
cover on Earth, orbital motion and the rotation angle of MXER. 
 

Table 1.  Sensitivity to perturbations.

Perturbation Parameter Variation Transverse Tip 

Response, Meters

Aerodynamic 5% 2

Ampere Forces 1 mA 3

Solar Radiation Pressure 5% 1–4

Thermal Expansion 1 K 163

Creep 2.4 m/day 41

Mass Loss 5–150 g/day < 0.001

	 The MXER system exhibits another surprising aspect:  there is a near resonance of the main trans
verse mode U2 and the frequency of the gravity gradient variation, which cycles twice every rotation of 
the tether system about its center of mass, or 2Ω. This is a long-term resonant effect, with the amplitude 
changing gradually over multiple perigee passages. The maximum tip response builds to about 120 
meters over five perigee passages, then decreases to nearly zero over the next five perigee passages. 

	 A typical response is shown in Figure 1. This resonance is difficult to avoid by changing the spin 
rate, because the transverse frequencies are proportional to Ω.
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Figure 1. Transverse amplitude over twelve orbits.
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VI.  CONCLUSIONS AND RECOMMENDATIONS

	 The MXER dynamic system is very sensitive to perturbations, and is extremely sensitive to 
length variations. The main environmental uncertainty is temperature, which causes the largest changes 
in tip transverse position. It is therefore important that MXER have a very accurate estimation system, 
and a very accurate control system. This will require the design of estimation and control algorithms 
based on very accurate in-flight measurements of the distances between neighboring modules. This is a 
challenging task, but the distance variations carry the signatures of all the dynamic processes, and will 
form the basis for the control signals.
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